Unités, multiples et sous-multiples 🔛

Fiche outil 1

Les grandeurs mesurables se représentent par un nombre suivi d'une unité. Ce tableau indique les unités du système international (SI) les plus couramment utilisées en physique-chimie :

Grandeur	Unité	Multiple	Sous-multiples	Correspondances
longueur	mètre (m)	kilomètre (km)	 centimètre (cm) millimètre (mm) micromètre (μm) nanomètre (nm) 	• 1 km = 1 × 10 ³ m • 1 mm = 1 × 10 ⁻³ m • 1 µm = 1 × 10 ⁻⁶ m • 1 nm = 1 × 10 ⁻⁹ m
surface	mètre carré (m²)	kilomètre carré (km²)	centimètre carré (cm²)	• 1 $m^2 = 1 \times 10^4 \text{ cm}^2$ • 1 $km^2 = 1 \times 10^6 \text{ m}^2$
volume 	mètre cube (m³)	-	litredécimètre cubecentimètre cube	• 1 m ³ = 1 × 10 ³ dm ³ • 1 dm ³ = 1 × 10 ³ cm • 1 dm ³ = 1 L • 1 cm ³ = 1 mL
temps 325	seconde (s)	• heure (h) • minute (min)	-	• 1 h = 60 min • 1 min = 60 s • 1 h = 3 600 s
vitesse (m/h)	mètre par seconde (m/s)	-	kilomètre par heure (km/h)	1 m/s = 3,6 km/h
masse	kilogramme (kg)	tonne (t)	gramme (g)	• 1 t = 1×10^3 kg • 1 kg = 1×10^3 g
intensité 🔀	ampère (A)	-	milliampère (mA)microampère (μA)	• 1 A = 1 × 10 ³ mA • 1 A = 1 × 10 ⁶ μA
tension 2:V	volt (V)	kilovolt (kV)	millivolt (mV)	• 1 kV = 1 × 10 ³ V • 1 V = 1 × 10 ³ mV
résistance électrique	ohm (Ω)	kiloohm (kΩ)mégaohm (MΩ)	-	• 1 k Ω = 1 × 10 ³ Ω • 1 M Ω = 1 × 10 ⁶ Ω
énergie kwh	joule (J)	• kilojoule (kJ) • wattheure (Wh)	-	• 1 kJ = 1×10^3 J • 1 Wh = 3.6×10^3 J
puissance 20W	watt (W)	kilowatt (kW)	milliwatt (mW)	• 1 kW = 1 × 10 ³ W • 1 W = 1 × 10 ³ mW
poids 🍑	newton (N)	• kilonewton (kN) • décanewton (daN)	millinewton (mN)	• 1 daN = 10 N • 1 N = 1 × 10 ³ mN
fréquence 50H2	hertz (Hz)	• kilohertz (kHz) • mégahertz (MHz)	-	• 1 kHz = 1 × 10 ³ Hz • 1 MHz = 1 × 10 ⁶ Hz
pression has	pascal (Pa) et bar	hectopascal (hPa)	-	• 1 hPa = 100 Pa • 1 bar = 1 × 10 ⁵ Pa